Back to Spam

Giveaway chat thread

deletedover 8 years

The person who comments on this thread without someone replying in 24 hours will win 40 tokens and this thread will shut down, goodluck.

deletedover 8 years
No I'm not
now you're thinking with portals
deletedover 8 years
Senid d
The Ramanujan theta function is defined as

{\displaystyle f(a,b)=\sum _{n=-\infty }^{\infty }a^{n(n+1)/2}\;b^{n(n-1)/2}} f(a,b) = \sum_{n=-\infty}^\infty
a^{n(n+1)/2} \; b^{n(n-1)/2}
for |ab| < 1. The Jacobi triple product identity then takes the form

{\displaystyle f(a,b)=(-a;ab)_{\infty }\;(-b;ab)_{\infty }\;(ab;ab)_{\infty }.} f(a,b) = (-a; ab)_\infty \;(-b; ab)_\infty \;(ab;ab)_\infty.
Here, the expression {\displaystyle (a;q)_{n}} (a;q)_n denotes the q-Pochhammer symbol. Identities that follow from this include

{\displaystyle f(q,q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}={(-q;q^{2})_{\infty }^{2}(q^{2};q^{2})_{\infty }}} f(q,q) = \sum_{n=-\infty}^\infty q^{n^2} =
{(-q;q^2)_\infty^2 (q^2;q^2)_\infty}
and

{\displaystyle f(q,q^{3})=\sum _{n=0}^{\infty }q^{n(n+1)/2}={(q^{2};q^{2})_{\infty }}{(-q;q)_{\infty }}} f(q,q^3) = \sum_{n=0}^\infty q^{n(n+1)/2} =
{(q^2;q^2)_\infty}{(-q; q)_\infty}
and

{\displaystyle f(-q,-q^{2})=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n(3n-1)/2}=(q;q)_{\infty }} f(-q,-q^2) = \sum_{n=-\infty}^\infty (-1)^n q^{n(3n-1)/2} =
(q;q)_\infty
this last being the Euler function, which is closely related to the Dedekind eta function. The Jacobi theta function may be written in terms of the Ramanujan theta function as:

{\displaystyle \vartheta (w,q)=f(qw^{2},qw^{-2})} \vartheta(w, q)=f(qw^2,qw^{-2})
deletedover 8 years
Quiet you
came here to say that
over 8 years
The Ramanujan theta function is defined as

{\displaystyle f(a,b)=\sum _{n=-\infty }^{\infty }a^{n(n+1)/2}\;b^{n(n-1)/2}} f(a,b) = \sum_{n=-\infty}^\infty
a^{n(n+1)/2} \; b^{n(n-1)/2}
for |ab| < 1. The Jacobi triple product identity then takes the form

{\displaystyle f(a,b)=(-a;ab)_{\infty }\;(-b;ab)_{\infty }\;(ab;ab)_{\infty }.} f(a,b) = (-a; ab)_\infty \;(-b; ab)_\infty \;(ab;ab)_\infty.
Here, the expression {\displaystyle (a;q)_{n}} (a;q)_n denotes the q-Pochhammer symbol. Identities that follow from this include

{\displaystyle f(q,q)=\sum _{n=-\infty }^{\infty }q^{n^{2}}={(-q;q^{2})_{\infty }^{2}(q^{2};q^{2})_{\infty }}} f(q,q) = \sum_{n=-\infty}^\infty q^{n^2} =
{(-q;q^2)_\infty^2 (q^2;q^2)_\infty}
and

{\displaystyle f(q,q^{3})=\sum _{n=0}^{\infty }q^{n(n+1)/2}={(q^{2};q^{2})_{\infty }}{(-q;q)_{\infty }}} f(q,q^3) = \sum_{n=0}^\infty q^{n(n+1)/2} =
{(q^2;q^2)_\infty}{(-q; q)_\infty}
and

{\displaystyle f(-q,-q^{2})=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n(3n-1)/2}=(q;q)_{\infty }} f(-q,-q^2) = \sum_{n=-\infty}^\infty (-1)^n q^{n(3n-1)/2} =
(q;q)_\infty
this last being the Euler function, which is closely related to the Dedekind eta function. The Jacobi theta function may be written in terms of the Ramanujan theta function as:

{\displaystyle \vartheta (w,q)=f(qw^{2},qw^{-2})} \vartheta(w, q)=f(qw^2,qw^{-2})
deletedover 8 years
Don't tell me how to live my life
waste
deletedover 8 years

Jimbei says


riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:




over 8 years
waste
deletedover 8 years

riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:



riskitforthebiscuit says

:rip:

:rip:
deletedover 8 years
yes
that bad?
over 8 years
...
over 8 years
terrible, hbu
how goes it
deletedover 8 years
Morning
rbbuish
over 8 years
tresh
over 8 years
grabage
over 8 years
hrh
deletedover 8 years
you dont have one
over 8 years
not on my watch